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Goal: Estimate the significance of shot-to-shot
variations in hohlraum parameters

We use exact statistics to determine confidence levels
for NIF shot variations using a limited sample

Variation means: 

 X

X

The large population 
standard deviationLaser

Backscatter / CBET

Radiation Temp.

Additional parameters: Beam 
propagation, X-ray conversion, wall 
losses, wall blow-in, hot-electron 
preheat, glint, re-amplification…

The large population 
average

Sample Large population

Measure this Infer this

We consider the variation of 
several key hohlraum parameters
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We studied 15 shots from the “CD mix” shot series

Other parameters are within the ignition spec

15 shots using the 
same hohlraum

CD mix series
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Laser Inner Cone

Laser Outer Cone

Laser Total

Radiation Temp

Same laser and Trad

4m CD, 0-8m 
from gas/shell 

interface

Convergence ~15
11 ± 0.5 mg/cc T2 gas

Convergence ~20
5.5 ± 0.5 mg/cc T2 gas

Same capsule –
different CD layer
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The variation in radiation temperature and
laser delivery are approximately consistent 

Expect Tr/Tr = ¼ ILas/ILas; data is close to this.  Differences may be additional error from the diagnostics

Laser delivery ranges within 
2 to 9% of request

<Laser>
Variation

68% confidence 
level for true 
sigma

Radiation temperature 
varies from 1 to 3%

68% confidence 
level for true 
sigma

<Tr>

Variation
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Backscatter fluctuations can impact
the hot-spot shape at stagnation

Laser pulse shape

Picket Peak

The various ignition hohlraum designs 
tend to show backscatter in the picket
and/or the peak

Picket backscatter variations:

Can disrupt initial capsule 
compression symmetry

Peak backscatter:

Can disrupt final capsule 
implosion symmetry
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Late-time backscatter fluctuations can lead to 10%
variations in laser power reaching the hohlraum wall

Need to determine laser variations in low-mode x-ray flux onto the capsule

Incident 
Inners

Incident 
Outers

SRS

Power 
transfer

SRS 1

2

3

4

Incident 
Inners

After 
CBET

After 
SRS

At the 
Au wall

1

2

3 4

1
0
%

 v
a
ri
a
tio

n

SRS backscatter  ~ a 10% 
variation in what reaches the wall

SRS late-time 
backscatter

10% variation

Outer beam SBS variation is 
~ 5% (0.6 kJ out of 11.7 kJ)

3
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We use simple approximations to convert the variation
in laser energy to variations in x-ray flux on the shell

Using the flux variation we can estimate the effect on shape

The hohlraum averages the 
laser-spot x-rays

Mapping laser power variations to x-ray flux variations:

~0.7 % maximum variation in P20

Late-time 16 inners 16 – 44.5° 16 – 50°

Variation 10% 4% 5%

At late times the wall albedo is ~ 90%.  Estimate P2/P0

to get

A point on 
the capsule 
sees x-ray 
emission 
from a large 
cone area

P2

P0

 (2n1)
1

F
 P2  SP2

Azimuthal 
factor

Albedo 
factor

Smoothing 
factor
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We use the rocket equation to estimate that late-time 
backscatter variations produce small late-time shape effects

Late-time laser variations generate insignificant variations in the implosion shape

dR

dt
Vimp(cm/s) 107 TR ln

m(t)

m0











m(g/cm2 )  3105TR
3

m(t) m0 3105TR
3t

Shell

X-ray flux causes the shell 
to ablate and implode

TR

TR


1

4

F

F

This gives:
R

R


3

4

I

I

For 0.007 I/I this is ~ 5 µm Small effect
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Early-time backscatter variations may have a larger effect
Use different hohlraum experiments for this study

Early-time laser variations may generate noticeable variations in the implosion shape

• SBS produces ~ 37% 
variation in laser power on 
the wall

• Flux variations reaching 
the capsule estimated to 
be ~ 2.1%

• First shock break-out time 
varies by < 50 ps; shocks 
1 and 2 merger location 
varies by ~ 5 µm

Possibly important effect

Outer cone backscatter shows significant 
variation at early time
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Summary

• Laser variations are consistent with variations in the hohlraum radiation 
temperature

• Typical late-time backscatter variations are not important for shape at 
stagnation

• Early-time backscatter variations may be important in affecting the break-out 
time and merger time

• Future work will define a limit to the early-time scatter fluctuations for different 
ignition hohlraum designs





LLNL-PRES-xxxxxx
12

We use simple estimates to convert the variation
in laser energy to variations in x-ray flux on the shell

Using the flux variation we can estimate the effect on shape

X-ray flux causes the shell 
to ablate and implode

Mapping laser power variations to x-ray flux variations:

~0.7 % maximum variation in P20

Shell

16 inners 16 – 44.5° 16 – 50°

Variation 10% 4% 5%

At late times the wall albedo is ~ 90%.  Estimate P2/P0

to get
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We use the rocket equation to show that late-time backscatter 
variations produce negligible variations in late-time shape

Late-time laser variations generate insignificant variations in the implosion shape

dR

dt
Vimp(cm/s) 107 TR ln

m(t)

m0











m(g/cm2 )  3105TR
3

m(t) m0 3105TR
3t

Shell

X-ray flux causes the shell 
to ablate and implode

TR

TR


1

4

F

F

Integrating over time gives:

R  750 µm
F

F
(overestimate)

For 0.002 dF/F this is 1.5 µm Small effect

Per mode –
add Sqrt(3)
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We use a View Factor model to convert the variation
in laser energy to variations in x-ray flux on the shell

Using the flux variation we can estimate the effect on shape

X-ray flux causes the shell 
to ablate and implode

Mapping laser power to x-ray flux requires 
complex calculations:

Must account for laser intensity, cross-beam, 
absorption, geometry etc

Generate a matrix which maps laser power 
variations to flux variations

L. Peterson 2012

Measured backscatter variations produce a 
0.2 % maximum variation in Y1-1 and Y20

Shell
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The early-time flux variation estimates are
based on View Factor calculations at late time

Early-time laser variations do not generate significant variations in the first shock break-out time

Late time Early time Result

Albedo ~ 90% (10 
photon scatters)

Albedo ~ 60% (2.5 
photon scatters)

4 x HIGHER contrast 
at early time

10% fluctuations on the 
inners, 5% outers

37% fluctuations on 
outermost cone; 4% on 
the other 3 cones

4 x HIGHER fluctuation 
level

0.04% fluctuation in Y20 0.64% fluctuation in Y20

(estimated)
16 x larger fluctuation 
at early time

< 1 µm fluctuation in 
implosion shape

< 20 ps fluctuation in 
the first shock Break-
out time

Early-time 
backscatter 
fluctuations must 
reach ~ 100% to 
affect shock-timing in 
a significant way


